Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1768(11): 2726-36, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17714685

RESUMO

Based on a number of experiments it is concluded that the fluorescein labeled beta-heptapeptide fluoresceinyl-NH-CS-(S)-beta(3)hAla-(S)-beta(3)hArg-(R)-beta(3)hLeu-(S)-beta(3)hPhe-(S)-beta(3)hAla-(S)-beta(3)hAla-(S)-beta(3)hLys-OH translocates across lipid vesicle bilayers formed from DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine). The conclusion is based on the following observations: (i) addition of the peptide to the vicinity of micrometer-sized giant vesicles leads to an accumulation of the peptide inside the vesicles; (ii) if the peptide is injected inside individual giant vesicles, it is released from the vesicles in a time dependent manner; (iii) if the peptide is encapsulated within sub-micrometer-sized large unilamellar vesicles, it is released from the vesicles as a function of time; (iv) if the peptide is submitted to immobilized liposome chromatography, the peptide is retained by the immobilized DOPC vesicles. Furthermore, the addition of the peptide to calcein-containing DOPC vesicles does not lead to significant calcein leakage and vesicle fusion is not observed. The finding that derivatives of the beta-heptapeptide (S)-beta(3)hAla-(S)-beta(3)hArg-(R)-beta(3)hLeu-(S)-beta(3)hPhe-(S)-beta(3)hAla-(S)-beta(3)hAla-(S)-beta(3)hLys-OH can translocate across phospholipid bilayers is supported by independent measurements using Tb(3+)-containing large unilamellar vesicles prepared from egg phosphatidylcholine and wheat germ phosphatidylinositol (molar ratio of 9:1) and a corresponding peptide that is labeled with dipicolinic acid instead of fluorescein. The experiments show that this dipicolinic acid labeled beta-heptapeptide derivative also permeates across phospholipid bilayers. The possible mechanism of the translocation of the particular beta-heptapeptide derivatives across the membrane of phospholipid vesicles is discussed within the frame of the current understanding of the permeation of certain oligopeptides across simple phospholipid bilayers.


Assuntos
Bicamadas Lipídicas/metabolismo , Oligopeptídeos/farmacocinética , Fosfolipídeos/metabolismo , Transporte Biológico , Dicroísmo Circular , Bicamadas Lipídicas/química , Lipossomos/metabolismo , Permeabilidade , Fosfolipídeos/química
2.
Chemistry ; 11(24): 7276-93, 2005 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16247825

RESUMO

The influence of charged side chains on the folding-unfolding equilibrium of beta-peptides was investigated by means of molecular dynamics simulations. Four different peptides containing only negatively charged side chains, positively charged side chains, both types of charged side chains (with the ability to form stabilizing salt bridges) or no charged side chains were studied under various conditions (different simulation temperatures, starting structures and solvent environment). The NMR solution structure in methanol of one of the peptides (A) has already been published; the synthesis and NMR analysis of another peptide (B) is described here. The other peptides (C and D) studied herein have hitherto not been synthesized. All four peptides A-D are expected to adopt a left-handed 3(14)-helix in solution as well as in the simulations. The resulting ensembles of structures were analyzed in terms of conformational space sampled by the peptides, folding behavior, structural properties such as hydrogen bonding, side chain-side chain and side chain-backbone interactions and in terms of the level of agreement with the NMR data available for two of the peptides. It was found that the presence of charged side chains significantly slows down the folding process in methanol solution due to the stabilization of intermediate conformers with side chain-backbone interactions. In water, where the solvent competes with the solute-solute polar interactions, the folding process to the 3(14)-helix is faster in the simulations.


Assuntos
Peptídeos/química , Dobramento de Proteína , Ligação de Hidrogênio , Modelos Moleculares , Conformação Proteica
3.
Chem Biodivers ; 2(5): 591-632, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-17192006

RESUMO

Whereas alpha-peptides are rapidly degraded in vivo and in vitro by a multitude of peptidases, substrates constructed entirely of or incorporating homologated alpha-amino acid (i.e., beta-amino acid) units exhibit a superior stability profile. Efforts made so far to proteolytically hydrolyze a beta-beta peptide bond have not proved fruitful; a study aimed at breaching this proteolytic stability is discussed here. A series of such bonds have been designed with side-chain groups similar in relative positions (constitution) and three-dimensional arrangements (configuration) as found about alpha-peptidic amide bonds. Increasing the prospect for degradation would permit the tuning of beta-peptide stability; here, however, no cleavage was observed (1, 2, 4-6, Table 1). Peptides comprised of alpha- and beta-amino acids (mixed alpha,beta-peptides, 8-11) are expected to benefit from both recognition by a natural receptor and a high level of proteolytic stability, ideal characteristics of pharmacologically active compounds. Beta3-peptides containing alpha-amino acid moieties at the N-terminus are degraded, albeit slowly, by several peptidases. Of particular interest is the ability of pronase to cleave an alpha-beta peptide bond, namely that of alphaAla-beta3 hAla. Significantly, successful hydrolysis is independent of the configuration of the beta-amino acid. Some of the alpha,beta-peptides discussed here are being investigated for their binding affinities to class I MHC proteins. The computer-programming steps required to prepare alpha,beta-peptides on an automated peptide synthesizer are presented.


Assuntos
Complexo Principal de Histocompatibilidade , Peptídeos/química , Peptídeos/metabolismo , Mimetismo Molecular , Ligação Proteica , Conformação Proteica
4.
Chemistry ; 10(7): 1607-15, 2004 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-15054747

RESUMO

Two different strategies have been employed for the synthesis of Fmoc-protected beta(3)-homoarginine; the Arndt-Eistert homologation of alpha-arginine and the guanidinylation of beta(3)-homoornithine. Solid-phase beta-peptide synthesis was used for the preparation of beta-heptapeptide 1, which was designed to form a helix stabilized by electrostatic interactions through positively (beta(3)hArg) and negatively charged (beta(3)hGlu) amino acid residues. CD measurements and corresponding NMR investigations in MeOH and aqueous solutions do indeed show that the beta-peptidic 3(14)-helix can be stabilized by salt-bridge formation.


Assuntos
Modelos Químicos , Fragmentos de Peptídeos , Arginina/síntese química , Arginina/química , Dicroísmo Circular , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Conformação Proteica , Estrutura Secundária de Proteína , Eletricidade Estática
5.
Chem Biodivers ; 1(1): 65-97, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17191776

RESUMO

In view of the important role arginine plays in living organisms as the free amino acid and, especially, as a residue in peptides and proteins, the homologous beta-homoarginines are central in our investigations of beta-peptides (Fig. 1). The preparation of beta2-homoarginine derivatives suitably protected for solution- or solid-phase peptide syntheses is described with full experimental detail (9 and 12 in Scheme 1). The readily available Fmoc-beta3 hArg(Boc)2-OH is used for manual solid-phase synthesis of beta3-oligoarginines (on Rink amide or Rink amide AM resin) either by single amino acid coupling (Scheme 3) or, much better, by dimer-fragment coupling (Scheme 4). In this way, beta3-oligoarginine amides composed of 4, 6, 7, 8, and 10 residues, both with and without fluorescein labelling, were synthesized (Schemes 2-4), purified by preparative HPLC and identified by high-resolution mass spectrometry. The free amino acids (R)- and (S)-H-beta2 hArg-OH and (S)-H-beta3 hArg-OH were tested for their ability to function as substrates for NO synthase (iNOS); the beta3-oligoarginine amides (5, 6, and 7 residues) were tested for antibacterial (against six pathogens) and hemolytic (against rat and human erythrocytes) activities. All test results were negative: none of the free beta-homoarginines induced NO formation (Fig. 3), and there was no lysis of erythrocytes (concentrations up to 100 microM; Table 1), and no significant antibiotic activity (MIC > or = 64 microg/ml; Table 2). Cell-penetration studies with the fluorescence-labelled, peptidase-resistant beta3-oligoarginine amides were carried out with HeLa cells and human foreskin keratinocytes (HFKs). The results obtained with fluorescence microscopy are: i) the longer-chain beta-oligoarginine amides (8 and 10 residues; Figs. 4-6) enter the cells and end up in the nuclei, especially in the nucleoli, irrespective of temperature (37 degrees and 4 degrees with HFKs) or pretreatment with NaN3 (with HFKs), indicating a non-endocytotic and non-energy-dependent uptake mechanism; ii) the beta-tetraarginine derivative occupies the cell surface but does not enter the cells (with HeLa); iii) the cell-growth rate of the HFKs is not affected by a 1-microM concentration of the fluorescence-labelled beta-octaarginine amide (Fig. 7), i.e., there is no antiproliferative effect. In vivo experiments with mouse skin and the beta-octaarginine derivative show migration of the beta-peptide throughout the epidermis (Fig. 8). As a contribution to understanding the mechanism, we have also studied the behavior of fluorescence-labelled beta-octa- and beta-decaarginine amides (TFA salts) towards giant unilamellar vesicles (GUVs) built of neutral (POPC) or anionic (POPC/POPG mixtures) phospholipids: the beta-oligoarginine amides bind tightly to the surface of anionic GUVs but do not penetrate the lipid bilayer (Fig. 9) as they do with living cells. In contrast, a beta-heptapeptide FL-22, which had been used as a negative control sample for the cell-penetration experiments, entered the GUVs of negative surface charge. Thus, the mechanisms of cell and GUV-model penetration appear to be different. Finally, the possible applications and implications of the 'protein transduction' by beta-oligoarginines are discussed.


Assuntos
Homoarginina/química , Homoarginina/farmacologia , Animais , Arginina/química , Arginina/farmacologia , Células Cultivadas , Células HeLa , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/fisiologia , Masculino , Camundongos , Ratos
6.
Chem Commun (Camb) ; (15): 1598-9, 2002 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-12170800

RESUMO

The importance of hydrogen bonding in beta-peptide 3(14)-helices is demonstrated by an NMR analysis of three beta-heptadepsipeptides containing a 3-hydroxybutanoic residue in position 2, 4 or 6.


Assuntos
Oligopeptídeos/química , Dicroísmo Circular , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Conformação Molecular , Oligopeptídeos/síntese química , Oxigênio/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...